Today, I am going to present a gist that I developed that separates the masking information contained in a Fmask layer into different bands, to be visualized separately, in QGIS, using the Python Console of QGIS, also known as PyQGIS.
Whatever is your geo-thing, you may have come across a Polygon which needed to be split in half, three parts, five parts (a hundred parts?). Possible applications of the split polygons are performing zonal statistics and terrain parceling (agriculture).
The input layer should be a point layer, in which there should be a point. The coordinates of this point should be the center of the circle (or wedge, or semi-circle). The default width of the wedge is 45°, or one-eight of a circle and the default azimuth of the wedge is 0°. The outer radius is what we are used to simply call a radius of a circle, and the inner radius variable will only be filled when we want to draw a ring or donut-like geometry.
Since, I have been saving the generated files in scratch layers whenever they are intermediate products, of auxiliary nature to the process I am running. This way, they are automatically deleted, and I don’t have to worry about them after executing my code. So, I decided to summarize how I save PyQGIS tool outputs in scratch layers, in case this is useful to someone out there!
This error is especially common when you are re-running a code you have already ran in the past. Sometimes, as I am coding, I run an incomplete version of my code, just to know if the compiler/interpreter accuses any errors. The codes frequently include open and saving items. I thought that the mentioned file would be overwritten every time I ran a file saving in the QGIS Python Console.
ERROR 1: Attempt to write non-multipoint (POINT) geometry to multipoint shapefile. ERROR 1: Unable to write feature 0 from layer points_layer. ERROR 1: Terminating translation prematurely after failed translation of layer points_layer (use -skipfailures to skip errors)
Today, I am going to write about the batch processing of loading and altering the symbology of a big group of raster layers on QGIS. This tutorial was made on QGIS 3.18 Zürich, using its Python Console to load the layers.